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1. Introduction

An important feature of string theory is how geometric data in a string compactification

appear in the associated low energy effective theory. A striking example is provided by

space-time filling brane probes of orbifold singularities. From the perspective of the quiver

gauge theory, a topology-changing flop transition appears as a Seiberg-like duality which

alters the ranks, matter content, and interaction terms of the gauge theory [1, 2]. It is
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therefore of interest to study the effect of flop transitions on more general brane configu-

rations.

A related issue concerns what degrees of freedom in string theory replace macroscopic

notions of classical geometry at small distance scales. In [3] it was shown that the target

space formulation of the topological A-model on C
3 describes quantum foam on the same

geometry. Remarkably, the partition sum of this model is identical to that of three dimen-

sional crystal melting [4]. In two dimensions, crystal melting adds squares to a 2d Young

tableau. In three dimensions, crystal melting stacks cubes at the corner of a room. It is

believed that other crystal melting models determine A-model amplitudes on more general

non-compact Calabi-Yau spaces.

Topological strings have also recently appeared in the physics of four dimensional

black holes. The work of [5] presented evidence that the indexed partition function for a

mixed ensemble of four dimensional Calabi-Yau black holes with fixed magnetic charges

and electric chemical potentials is determined by topological string theory on the same

Calabi-Yau space. This suggests that other ensembles of black holes are also of relevance.

In this note we combine these themes and show that the crystal melting configurations

of topological string theory are in one to one correspondence with certain BPS black holes

given by branes wrapped on collapsed cycles in the supersymmetric orbifolds C
2/Zn and

C
3/Zn × Zn in the limit of large n. The black holes in this spectrum are generated by all

possible flop transitions which leave the background Calabi-Yau geometry invariant, and

the stability of these configurations is determined by the rigid structure of the partially

melted crystal. Additionally, in both cases the duality group generated by these transitions

corresponds to the Weyl group of an infinite dimensional algebra. The character of the

basic representation of each algebra coincides with the corresponding partition sum over

black hole charges. We believe that this technique of generating BPS spectra on a Calabi-

Yau space using geometry preserving flop transitions may also be of use in a wider context

than that presented here.

At low energies, these charge configurations are well-described by gauged quiver quan-

tum mechanics. The ranks of the gauge group factors determine D0- and D2-branes

wrapped on collapsed cycles in C
2/Zn and D0-, D2- and D4-branes wrapped on collapsed

cycles in C
3/Zn × Zn. In the limit of large charges, a stable configuration in C

2/Zn and

C
3/Zn × Zn will produce a local model for a BPS black hole in six and four dimensions,

respectively. From the perspective of the effective theory, a flop transition which leaves

the classical geometry invariant may alter the ranks of the gauge groups but will always

preserve both the adjacency of bifundamentals in the quiver as well as the form of the

superpotential.

In order to describe the precise action of flop transitions on C
3/Zn × Zn, we will find

it necessary to treat the fractional branes of the orbifold theory as objects in the bounded

derived category of coherent sheaves. Each basis of fractional branes is generated by a

series of mutations on an exceptional collection of sheaves supported on a complex surface

of the resolved geometry. Further, the exceptional collections appropriate for describing

three dimensional crystal melting are all supported on a complex surface in the canonical

smooth resolution of C
3/Zn × Zn.
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Figure 1: A 2d Young tableau defines a height function on the one dimensional lattice given by

the integers. The numbers shown indicate height assignments for the given tableau. These heights

are the rank assignments in the large n C
2/Zn quiver theory.

Exceptional collections are most commonly used in the study of type IIB space-time

filling D3-brane probes of local Calabi-Yau singularities [1, 2, 6 – 8]. We note that there are

typically many exceptional collections which generate the same four dimensional quiver

gauge theory. This suggests the presence of a large gauge symmetry or redundancy in

the description of four dimensional quiver gauge theories in terms of exceptional sheaves.

Indeed, in the case of four dimensional gauge theories, gauge anomaly considerations require

that the rank assignments remain unchanged under flop transitions which preserve the

classical geometry. A perhaps surprising result of this note is that in the more general case

of BPS black holes described by gauged quiver quantum mechanics, different exceptional

collections will produce different rank assignments in the quiver theory and will therefore

break the gauge symmetry described above.

In our setup, the profile or “height” of the partially melted crystal is encoded in the

ranks of gauge groups in the quiver theory. In some sense, this is to be expected. The

target space formulation of topological string theory in terms of crystal melting in two

and three dimensions corresponds to counting D0-brane bound states in the topologically

twisted U(1) gauge theories of a D4-brane and D6-brane filling C
2 and C

3, respectively.

Since a D0-brane in the orbifolds C
2/Zn and C

3/Zn ×Zn lifts to n and n2 image branes in

C
2 and C

3 respectively, the untwisted RR D0-brane charge of the orbifold theory is up to

a factor of 1/n and 1/n2 this sum in ranks. We now describe in more detail these crystal

melting configurations.

As mentioned, the “height function” of the crystal specifies the ranks in the quiver

theory. For 2d crystals, this integer valued function satisfies:

h(i) − h(i + 1) = ±1 (1.1)

for all integers i. The profile of this function is given by rotating the Young tableau by

135◦. See figure (1) for an example. To describe heights for 3d crystals, we use dimer

models. Recent reviews on the mathematical physics of dimer models are given in [9, 10].

A dimer model corresponds to a collection of black and white atoms on a bipartite

lattice.1 The atoms of the lattice correspond to vertices, the oriented links between black

1This is a lattice which admits a coloring of its vertices by black and white atoms so that no white atom
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Figure 2: The empty room perfect matching (red). The integers at the center of each face indicate

the value of the height function. These heights map to rank assignments in the C3/Zn ×Zn quiver

theory given by the graph dual of the dimer lattice shown in figure (4).

and white atoms are edges, and polygons constructed from the edges are faces of the dimer

model. A perfect matching PM is defined as a collection of edges such that each vertex

touches a single edge of PM .

For dimers on the plane, every perfect matching PM defines a unique integer valued

height function hPM up to the addition of a constant. Given two faces A and B with

common edge e, we have:

hPM(A) − hPM(B) =

{
±1 if e /∈ PM

∓2 if e ∈ PM

}
(1.2)

where the overall sign is fixed by the orientation of e. The function hPM determines the

profile of a stepped surface.

Three dimensional crystal melting is specified by perfect matchings of the infinite

honeycomb lattice. The perfect matching for the frozen crystal with no atoms removed is

shown in figure (2). To visualize the crystal, it is helpful to draw a rhombus around each

edge contained in the perfect matching. The corresponding stepped surface constructed

from these rhombi realizes the profile of the melted crystal. See figure (3) for an example.

In an unrelated development, it has been shown that dimers on a T 2 determine the

low energy dynamics of type IIB space-time filling D3-branes probing a toric Calabi-Yau

singularity [11 – 13]. The physical origin of this T 2 was recently interpreted using mirror

symmetry in [14]. In a gauge theory dimer, the faces determine gauge groups, the oriented

edges shared by faces give the bifundamental matter, and the vertices give all tree level

superpotential terms. Note that by infinitely extending any finite dimer model on T 2,

we obtain a dimer model which tiles the plane. Indeed, the original motivation for this

note was to give a physical interpretation of the infinite honeycomb lattice dimer model of

crystal melting purely as a quiver gauge theory of the type shown in figure (4).

connects to a black atom and vice versa.

– 4 –



J
H
E
P
0
9
(
2
0
0
7
)
0
1
1

Figure 3: By surrounding each edge belonging to a perfect matching (red) by a rhombus (blue),

we obtain the profile for the corresponding crystal melting configuration. The figure shows the

single box crystal melting configuration (shaded).
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Figure 4: The graph dual of the infinite honeycomb lattice defines a quiver gauge theory. The

quiver nodes determine a lattice in the complex plane with generators e1 = e−iπ/6 and e2 = eiπ/2.

Superpotential terms are given by signed chiral gauge invariant operators constructed from triangles

enclosing a single + or − .

The plan of this note is as follows. In section 2 we study flops of black hole charge

configurations in the local geometry C
2/Zn which realize 2d crystal melting configurations.

We next show in section 3 that at the level of homology in the type IIB mirror of C
3/Zn×Zn,

there are naively far too many candidate charge configurations to match to 3d crystal

melting. Using technology from gauge theory dimer models, in section 4 we present a

refined analysis in the bounded derived category of coherent sheaves which recovers the

expected correspondence. Following this, in section 5 we connect the partition functions for

crystal melting to the representation theory of algebras naturally associated to the duality

groups of the orbifold theories and give a physical interpretation of this counting. Finally,

in section 6 we explain the direct mathematical connection between our ensemble of black
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Figure 5: In 2d tableau quivers, the vertical height of the 2d tableau determines the ranks of the

gauge groups. In the figure, the ranks decrease in the direction of the red arrows.

hole crystal melting configurations and topological string theory. We then conclude and

discuss possible extensions of this work.

2. 2d crystals and black holes

Near the orbifold point, the gauged quiver quantum mechanics of branes wrapping cycles

in C
2/Z∞×C is given by an infinite one dimensional lattice of U(Ni) quiver nodes attached

by chiral superfields Xi,i+1, Yi+1,i and Zi transforming in the representations (Ni,N i+1),

(Ni+1,N i) and (Ni,N i), respectively. D-brane probes of the finite n orbifold C
2/Zn were

first studied in [15]. The superpotential of the theory is:

W =
∑

i∈Z

Tr (ZiXi,i+1Yi+1,i − Zi+1Yi+1,iXi,i+1) . (2.1)

This is known as the A∞
∞ quiver [16]. The “fractional branes” of the orbifold CFT corre-

spond to wrapping D2-branes over the blown up 2-cycles given by the simple roots {αi}i∈Z

of the associated A-series Lie algebra. The intersection product of these cycles is up to a

minus sign given by the Cartan matrix of the algebra. The charge vector:

Q =
∑

i

Niαi (2.2)

defines a quiver with gauge group U(Ni) at the ith node. We define a 2d tableau quiver as

one where the ranks correspond to the heights of a 2d crystal.

The flop of the P
1 corresponding to αk is given by the Weyl reflection:

σαk
(Q) = Q − (αk · Q)αk (2.3)

which in four dimensional gauge theories describes a Seiberg-like duality of the kth quiver

node [1]. From the perspective of the quiver theory, this flop corresponds to the gauge

coupling g−2
k becoming negative. The ranks in the flopped theory are determined by

conservation of flux, or equivalently by the brane creation mechanism:

N ′
i = Ni + (Nk+1 + Nk−1 − 2Nk) δi,k. (2.4)

The duality group of the quiver theory is generated by products of the σαi
and is isomorphic

to the Weyl group of the infinite A-series algebra.

Our goal is to show that the flops of the empty room brane configuration:

Qempty =
∑

i

|i|αi (2.5)

– 6 –



J
H
E
P
0
9
(
2
0
0
7
)
0
1
1

correspond to 2d crystal melting configurations. Weyl reflection by σαk
yields:

σαk
(Qempty) = Qempty + 2δk,0α0. (2.6)

But this is precisely the rule for adding a box to the crystal melting configuration. Indeed,

the process of adding a box to the tableau changes the height of the 0th quiver node from

0 to 2. Note that the particular choice of ranks made in the empty room configuration

effectively constrains the location of the non-trivial flops.

We now show that this correspondence between crystal melting and flops of 2d tableau

quivers holds more generally. Given a quiver node with rank M , there are four possible

rank assignments consistent with equation (1.1):

(M − 1,M,M + 1), (M + 1,M,M − 1), (M + 1,M,M + 1), (M − 1,M,M − 1). (2.7)

It follows from equation (2.4) that in all cases a 2d tableau quiver always flops to another

2d tableau quiver. Furthermore, given two 2d tableau quivers T and T ′ = T + 2αk:

σαk
(T ) = T + 2αk = T ′. (2.8)

This implies that by acting with the duality group on the empty room configuration we

can reach any 2d tableau quiver. A similar set of statements holds for the inverted empty

room quiver:

Qinv =
∑

i

(N − |i|)αi (2.9)

where N → ∞ faster than n → ∞ in C
2/Zn.

Finally, in the case where n is large but finite, the quiver is given by a periodic one

dimensional lattice. The empty room black hole charge configuration now has two corners

about which crystal melting takes place. At finite n, the corresponding 2d tableaux begin to

mix after sufficiently many flops. In [17] a similar mixing of 2d tableaux was interpreted as

the non-perturbative creation of baby universes with Bertotti-Robinson cosmology AdS2×

S2.

2.1 Duality cascades

This same quiver also defines an N = 2 four dimensional gauge theory described by type

IIB D5-branes wrapped over the collapsed 2-cycles of the geometry. The flop transitions

considered above correspond to Seiberg-like dualities of the quiver gauge theory. The 1-loop

exact ith holomorphic gauge coupling at scale µ is:

1

g2
i (µ)

=
(2Ni − Ni+1 − Ni−1)

8π2
log

(
µ

Λi

)
. (2.10)

This implies that local maxima in the ranks of the quiver gauge theory are asymptotically

free.

Adding mass terms of the form TrZ2
i for all i to the superpotential of equation (2.1)

breaks the system to an N = 1 gauge theory of the type studied in [1]. Starting from the

Qinv rank assignments of equation (2.9), the theory will flow into the infrared, at which

– 7 –
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point it becomes appropriate to Seiberg dualize the corresponding gauge group. In this way,

crystal melting corresponds to a duality cascade in renormalization group flow. Although

we omit the details, it is also possible to show that by a suitable choice of couplings in

the initial configuration, any sequence of adding boxes to an inverted 2d tableau can be

achieved. In contrast to the original case of duality cascades on the conifold considered

in [18], the cascade of this system can continue indefinitely before it confines.

3. 3d crystals and black holes

We now consider black hole charges parametrized by three dimensional crystal melting

configurations. Interpreting the infinite honeycomb lattice as a gauge theory dimer model

of the type described in the introduction, the procedure of [15] shows that the associated

gauged quiver quantum mechanics system probes the supersymmetric orbifold C
3/Zn ×Zn

in the limit of large n. The quiver nodes determine a lattice in the complex plane with

generators e1 = e−iπ/6 and e2 = eiπ/2 and correspond to a basis of branes wrapping

collapsed 2- and 4-cycles. For faces F = ae1 + be2 with a, b ∈ Z, the matter content is

given by bifundamentals XF,F+e1
, YF,F+e2

and ZF,F−e1−e2
in the obvious notation. The

superpotential is:

W =
∑

F

Tr (XF,F+e1
YF+e1,F+e1+e2

ZF+e1+e2,F − XF,F+e1
ZF+e1,F−e2

YF−e2,F ) . (3.1)

We define a 3d tableau quiver as one where the rank assignments are given by the height

function of the dimer model. See figure (4) for a picture of this quiver theory.

For C
3/Zn × Zn, almost all of the flops of the geometry will alter the topology of the

quiver and thus the classical geometry probed by the branes. In this sense, the duality

group of the 2d tableau quivers is quite special because each flop preserves the intersection

product of the cycles in the geometry. Even with this restriction, a preliminary analysis

reveals far too many duals of the empty room quiver in comparison with crystal melting.

Because the analysis to follow is somewhat lengthy, we now give an outline of each

component of sections 3 and 4. In subsection 3.1 we present a naive analysis of geometric

transitions which preserve the Calabi-Yau geometry and find far too many black hole charge

configurations in comparison with crystal melting configurations. In section 4 we rectify this

by determining the physical meaning of the internal perfect matchings in a general gauge

theory dimer model. As explained in subsection 4.1, a candidate collection of fractional

branes may contain ghost fields which render the theory unphysical. In subsection 4.2

we show that the perfect matchings of the dimer model parametrize the physical quiver

theories. In appendix B we compute the effect of switching from one perfect matching

to another and find that it corresponds to a subset of the transformations considered in

subsection 3.1. Returning to the problem of crystal melting, we show in subsection 4.3 that

the BPS black holes generated by these transformations are in one to one correspondence

with crystal melting configurations. To complete our analysis, in subsection 4.4 we discuss

the physical meaning of the extra charge configurations obtained in subsection 3.1.

– 8 –
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3.1 Homology cycles in the mirror

To realize the flop transitions geometrically we pass to the type IIB theory on the mirror

manifold X̃ where worldsheet instanton corrections have been resummed into the geometry.

The D0-, D2- and D4-branes which base the quiver theory in C
3/Zn × Zn map to D3-

branes wrapping homology 3-spheres ∆i ∈ H3(X̃, Z) for i = 1, . . . , n2. The anti-symmetric

intersection pairing ∆i ∩ ∆j determines the number of bifundamentals shared by ∆i and

∆j . The charge vector:

Q =
∑

i

Ni∆i (3.2)

defines a quiver with gauge group U(Ni) at the ith node. In the context of Seiberg dualities

of four dimensional gauge theories, flops in the mirror theory were studied in [1, 19]. We

flop the brane wrapping ∆1 by passing it through all incoming branes (∆1 ∩ ∆in < 0) for

SL duality and all outgoing branes (∆1 ∩ ∆out > 0) for SR duality.

In the case of the infinite honeycomb lattice, we label the outgoing branes as ∆2,∆3,∆4

and the incoming branes as ∆5,∆6,∆7. Applying the transformation SR yields:

SR (∆1) = −∆1 (3.3)

SR (∆out) = ∆out + (∆1 ∩ ∆out) ∆1 = ∆out + ∆1 (3.4)

where all the other ∆i which base the quiver remain unchanged. This new basis of branes

does not preserve the intersection product of the geometry. We perform a further SR

transformation by passing the brane wrapping −∆1 through ∆5,∆6,∆7 to find:

S2
R (∆1) = − (−∆1) = ∆1 (3.5)

S2
R (∆out) = ∆out + ∆1 (3.6)

S2
R (∆in) = ∆in + (−∆1 ∩ ∆in) (−∆1) = ∆in − ∆1 (3.7)

or,

S2
R (∆j) = ∆j + (∆1 ∩ ∆j) ∆1 (3.8)

for all j. The intersection product is now unchanged:

S2
R (∆i) ∩ S2

R (∆j) = ∆i ∩ ∆j. (3.9)

Conservation of flux determines the ranks of the gauge groups:

7∑

i=1

Ni∆i = S2
R (N1) ∆1 +

4∑

i=2

S2
R (Ni) (∆i + ∆1) +

7∑

i=5

S2
R (Ni) (∆i − ∆1) (3.10)

so that:

S2
R (Ni) = Ni + δi,1

(∑
Nin −

∑
Nout

)
(3.11)

in the obvious notation. A similar analysis yields:

S2
L (Ni) = Ni + δi,1

(∑
Nout −

∑
Nin

)
. (3.12)

– 9 –
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Now apply the S2
R transformation to any node of the empty room quiver with rank

assignments as in figure (2). First consider any face in the dimer model with two edges in

the perfect matching. In this case, inspection of figure (2) implies that S2
R(N1) = N1. For

the face with three edges in the perfect matching, N1 = 0, N2,3,4 = 1 and N5,6,7 = 2 so

that:

S2
R (N1) = 0 + (2 + 2 + 2 − 1 − 1 − 1) = +3. (3.13)

This matches the change in the height function from crystal melting. Note that the trans-

formation S2
L would have produced a negative rank gauge group.

To show that any crystal melting black hole charge configuration may be reached by a

sequence of S2
R transformations, dualize the face of a 3d tableau quiver where all incoming

edges belong to the perfect matching. The rank assignments are:

NF+ei
= NF−e1−e2

= NF + 1 (outgoing) (3.14)

NF−ei
= NF+e1+e2

= NF + 2 (incoming) (3.15)

for i = 1, 2. Applying the transformation S2
R yields:

S2
R (NF ) = NF +

(∑
Nin −

∑
Nout

)
= NF + 3. (3.16)

This matches the change in height of the crystal. By induction, we can reach any 3d

tableau quiver by successive S2
R transformations of the empty room quiver.

But at the level of homology, this is not the full collection of rank assignments which

S2
R generates. Applying the transformation S2

R n times yields:

(
S2

R

)n
(NF ) = NF + 3n (3.17)

which is a much larger spectrum of BPS black holes. As we show in section 4, none of

these extraneous charge configurations are stable.

4. Fractional branes and dimers

To obtain a more refined physical description of admissible S2
R transformed brane configu-

rations, we pass to the bounded derived category of coherent sheaves on X = C
3/Zn ×Zn,

denoted Db(X). Under certain plausible assumptions, most of the results of the following

subsections hold for general toric Calabi-Yau threefolds. Although a candidate collection

of fractional branes in Db(X) may generate the correct quiver structure, the corresponding

gauge theory must not contain any ghosts. Indeed, in subsection 3.1 we merely counted

the number of bifundamentals given by the intersection product of homology cycles in the

mirror and did not address the physical properties of these massless degrees of freedom.

Our goal in this section is to eliminate all unphysical candidate collections.

A physical basis of fractional branes is determined by a collection of exceptional sheaves

supported on a complex surface V obtained from a partial resolution of X. An exceptional

collection may be thought of as a basis of branes wrapping V with the property that

the associated quiver theory is obtained from the physical quiver by deleting a minimal

– 10 –
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Figure 6: The gauge theory dimer model for the supersymmetric orbifold C3/Z3 is shown on the

left. By deleting the edges belonging to the internal perfect matching (red) we obtain a Beilinson

quiver which by definition contains no directed loops.

number of bifundamentals so that no directed loops remain. An exceptional collection is

called strong when the basis of fractional branes it generates contains no ghost matter.

In this case, the quiver with deleted arrows is called a Beilinson quiver. See figure (6)

for an example. Note that a Beilinson quiver has a certain number of starting (terminal)

quiver nodes such that all attached bifundamentals are outgoing (incoming). We review

in appendix A the precise definition of strong exceptional collections and their relation to

fractional branes.

Although implementing these extra physical conditions appears unwieldy, it has re-

cently been shown that in the case of gauge theory dimer models, the perfect matchings of

the dimer model parametrize these exceptional collections [20]. As we show in appendix B,

the local rearrangement of a perfect matching corresponds to the action of S2
R or S2

L on the

fractional branes. This allows us to recover the expected match to crystal melting. Based

on the general analysis presented in sections 4.1 and 4.2, it follows that the additional S2
R,L

transformations of section 3.1 introduce ghost matter into the quiver. We conjecture that

the corresponding bound state decays before these ghosts are produced and explain how

this picture is consistent with expectations from supergravity.

4.1 Physical fractional branes and ghosts

The “fractional branes” of a physical quiver theory correspond to branes wrapping collapsed

cycles in the geometry. The matter content of the quiver theory is determined by massless

open strings with the appropriate Chan-Paton factors. More formally, open strings in the

quiver are described by maps of the form Homk
Db(X)

(E,F ) for k = 0, 1, 2, 3 with E and F in

Db(X) [21]. At the orbifold point of the theory, the mass squared of the corresponding zero

modes is M2
k = (k − 1) /2 in string units. Although the GSO projection removes the k = 0

(and k = 2) zero modes from the string spectrum, there are still potential instabilities

in the brane system. A general collection of candidate fractional branes in Db(X) may

also contain more exotic massless degrees of freedom given by bifundamental vector bosons

corresponding to the first excited state of the map Hom0
Db(X)

(E,F ). These fields were

interpreted in [22] as tachyons in a topological brane anti-brane system. In the physical

string theory, such fields signal the presence of uncanceled ghosts [23, 24].
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Whereas gauge invariance and the Ward identities ensure that all negative norm states

of an adjoint valued vector boson decouple from the physical Hilbert space, no such decou-

pling occurs when the vector boson is in the bifundamental of two gauge groups. Indeed,

the ghost number of the corresponding vertex operators in the open topological B-model

shows that such fields and thus the associated quiver theories are unphysical [23]. In the

case of gauged quiver quantum mechanics, these exotic bosonic propagating degrees of

freedom correspond to bifundamental2 scalars with a wrong sign kinetic term.

The kinetic term of either a physical or unphysical bifundamental scalar X is:

Lkin = c (ψ) Tr
(
(D0X) (D0X)†

)
(4.1)

where the real function c (ψ) is a moduli dependent factor which is positive for physical

matter and negative for ghost matter. The monodromy transformations S2
R,L will therefore

alter c (ψ) and may even cause it to switch sign. Before this occurs, the system enters a

regime of strong coupling where c (ψ) is nearly zero. Although we do not understand the

dynamics at small c (ψ), we conjecture that the corresponding bound state decays before

the unphysical ghost is produced. We will return to this issue in subsection 4.4.

4.2 Perfect matchings and exceptional collections

To construct a basis of fractional branes which excludes the presence of ghost matter, it

suffices to consider strong exceptional collections of sheaves supported on a complex surface

V which may be used to generate a physical basis of fractional branes, as in [1, 8]. We now

explain the connection between perfect matchings and exceptional collections.

To partially classify the perfect matchings of the dimer model, fix a reference perfect

matching PM0 and consider the formal difference of edges given by PM − PM0 where

PM is any other perfect matching. This formal difference determines a homology 1-cycle

in the T 2 of the dimer model. As shown in [10], the corresponding subset of lattice points

in H1

(
T 2, Z

)
≃ Z × Z defines a convex polytope. We define an internal (external) perfect

matching as one where its lattice point lies in the interior (boundary) of this polytope. The

key insight of [20] was that the internal perfect matchings parametrize all possible ways of

deleting a minimal number of arrows in the quiver so that no directed loops remain. Note

that this is a necessary condition for forming a Beilinson quiver.

As shown in [20], up to tensoring all sheaves by a common line bundle, the internal

perfect matchings of the dimer model are in one to one correspondence with exceptional

collections of sheaves which generate the same four dimensional quiver gauge theory. On

an example by example basis it was shown in [20] that each such collection is strong, so we

shall assume that each exceptional collection generates a physical quiver gauge theory.3 In

2For these more exotic bifundamentals, the orientation of the arrow in the quiver theory is aligned in

the opposite direction to that of the associated Hom0 map [23].
3In fact, achieving the match with crystal melting configurations does not require this stronger assump-

tion. It follows from the discussion in section 6 that the empty room perfect matching defines a strong

exceptional collection because all of the sheaves in this collection are generated by their global sections.

Because all of the other internal perfect matchings of crystal melting define foundations for the same strong

helix, we conclude that all of the perfect matchings of crystal melting generate physical quiver gauge theories

for the large n orbifold C
3/Zn × Zn.
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other words: The internal perfect matchings parametrize all physical collections of fractional

branes which preserve both the adjacency of bifundamentals in the quiver as well as the form

of the superpotential.

Now that we have a catalogue of admissible collections of fractional branes in terms

of perfect matchings, we can consider the effect of switching perfect matchings. We defer

this computation to appendix B where we show that changing a starting (resp. terminal)

node of the associated Beilinson quiver to a terminal (resp. starting) node corresponds to

a S2
R (resp. S2

L) transformation.

4.3 Crystal melting revisited

We now specify the empty room quiver by two conditions. First, we take the ranks NF

equal to the heights hF of the empty room perfect matching shown in figure (2). Second,

we stipulate that the collection of fractional branes used to base the empty room quiver

theory be derived from the same empty room perfect matching. This second condition

guarantees that the corresponding Beilinson quiver has exactly one starting node at (0, 0)

with smallest rank in the quiver gauge theory.

Because there is a single starting node in the Beilinson quiver, we may only apply the

transformation S2
R at the node (0, 0). This transformation changes the node (0, 0) into

a terminal node. Further, the three nodes (1, 0), (0, 1) and (−1,−1) now correspond to

starting nodes in the transformed Beilinson quiver. The change in rank of the (0, 0) node

under S2
R is given by equation (3.16):

N(0,0) 7→ N(0,0) + (Nin − Nout) = N(0,0) + (6 − 3) = N(0,0) + 3. (4.2)

We thus see that the change in ranks exactly coincides with the change in heights from

switching perfect matchings. Iterating again, there are now three candidate starting nodes

for the Beilinson quiver. We may apply S2
R to any of these nodes to obtain another 3d

tableau black hole. Combining this with the analysis done around equation (3.16), we

conclude that: The spectrum of BPS black hole charge configurations which are generated

by geometry preserving flops of the empty room charge configuration are parametrized by

3d crystal melting configurations.

4.4 Extra charges, attractors and ghosts

At a formal level, we have parametrized the collection of fractional brane configurations

which can be used to base the quiver theory. Even so, it is important to identify the

explicit physical mechanism which prevents additional charges from appearing in the single

particle BPS spectrum. To this end, we review the decay of single particle objects first in

the context of Seiberg-Witten theory and then in the context of the attractor mechanism

for four dimensional Calabi-Yau black holes. We conjecture that before the transformation

S2
R produces ghost matter, a similar process causes the brane configuration to decay.

First consider the four dimensional N = 2 SU(2) gauge theory studied by Seiberg

and Witten in [25]. The moduli space of the theory is parametrized by the coordinate

u =
〈
Trφ2

〉
where φ denotes the adjoint valued Higgs field. The electric and magnetic
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charge numbers (nm, ne) determine the central charge vector Z = nmaD + nea where a(u)

denotes the scalar component of the N = 2 U(1) “photon” vector multiplet and aD(u) is

its conjugate magnetic dual. By a suitable choice of renormalization scheme, the magnetic

monopole with charge (1, 0) becomes massless near the point u = 1. At weak coupling,

applying monodromy transformations about the point u = 1 produces a tower of BPS

charges given by (1, n) and (−1,−n) for integers n. At strong coupling, however, only the

charge configurations (1, 0) and (1, 1) remain in the single particle BPS spectrum. Indeed,

in the process of performing the monodromy transformation about the point u = 1, a given

BPS state will cross a curve of marginal stability with aD/a real. At this curve, such a

state may decay into a multi-particle state of the form S1 + S2. This same conclusion was

reached in the derived category by more rigorous means using notions of Π-stability in [26].

This entire discussion embeds as the low energy limit of type II string theory compact-

ified on a rigid Calabi-Yau threefold. From the perspective of four dimensional Calabi-Yau

black holes in N = 2 supergravity, the above truncation on the spectrum is also expected.

To understand this, we first recall some facts about the attractor mechanism for four di-

mensional BPS black holes in asymptotically flat space [27 – 30]. Although the entropy of

such black holes depends on the near horizon values of the vector multiplet moduli, these

values are fixed by the charges of the black hole. The position dependence of the vector

multiplet moduli is specified by an attractor flow in moduli space. As explained in [31, 32],

if an attractor flow defined by a homology 3-cycle Q passes a branch cut in moduli space

produced by a conifold point where a 3-cycle ∆ shrinks to zero size, it will instead flow to

a fixed point with charge given by Picard Lefschetz theory:

Q′ = Q ± (∆ ∩ Q)∆ = S2
R,L(Q) (4.3)

where in the above we have used the mirror type IIB language. Now consider an attractor

flow which circles the conifold point n times and naively produces infinitely many different

charge configurations. As explained in [31], after the flow crosses the branch cut for the

first time, a new wall of marginal stability appears which extends out from the conifold

point. Upon crossing this wall, the attractor flow will split into two constituent products,

one of which becomes massless as it flows to the conifold point. We thus obtain from a

different perspective the same truncation. An analysis of monodromies and Π-stability in

the derived category was presented in [33].

We conjecture that a similar set of decays occur for 3d tableau BPS black holes.

Although a full analysis is beyond our reach, we can still sketch an argument of what we

expect to happen. Because the action of S2
R,L corresponds to a monodromy transformation

around a singular point in moduli space, the coefficient c(ψ) of equation (4.1) is sensitive

to this change. We suspect that this variation in the moduli causes the gauged quiver

quantum mechanics to become strongly coupled before c(ψ) changes sign. To prevent the

appearance of ghosts, the brane system must develop a tachyonic mode and decay to some

constituent products.
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5. Black hole ensembles and characters

As mentioned in the introduction, the untwisted RR D0-brane charge of a black hole charge

configuration realized by branes wrapped on cycles in the orbifolds C
2/Zn and C

3/Zn×Zn

is given by the sum over ranks in the gauged quiver quantum mechanics:

Q
(0)
RR (BH) =

1

|Γ|

∑

i

Ni ≡
d

|Γ|
ε (BH) (5.1)

where |Γ| = n, n2 and d = 2, 3 for C
2/Zn and C

3/Zn × Zn, respectively. Summing over all

black holes which are generated by geometry preserving flops of the empty room charge

configurations yields the crystal melting partition functions:

ZBPS =
∑

BH

qε(BH) = Zcrystal =





∏

n≥1

(1 − qn)−1 (2d)

∏

n≥1

(1 − qn)−n (3d)





. (5.2)

These partition functions are characters of the basic representations of the infinite

dimensional algebra sl∞ and the affine algebra ŝl (∞) at large central charge. We refer to

appendices C and D for the definitions and representation theory of these algebras. Under

the action of the Weyl group, the orbit of the highest weight λ of the basic representation

L (λ) of an infinite dimensional algebra A generates the weight system Ωλ.4 In the cases

we study, the multiplicity of each weight in L (λ) is unity. It therefore follows that the orbit

of λ under the action of the Weyl group generates the representation. Because the Weyl

groups of the algebras sl∞ and ŝl (∞) coincide with the duality groups of the C
2/Z∞ and

C
3/Z∞ ×Z∞ quiver theories,5 we conclude that the 2d and 3d inverted empty room black

holes correspond to highest weight states of the basic representations of sl∞ and ŝl (∞),

respectively. We now discuss the physical origin of these algebras.

Although it is well known that the orbifold theory C
2/Zn produces an enhanced SU(n)

gauge symmetry in the uncompactified directions of the space-time, it is less clear whether

a similar enhanced gauge symmetry is produced by the orbifold C
3/Zn ×Zn. Nevertheless,

the similarities between the algebras sl∞ and ŝl (∞) and their analogous roles in describing

crystal melting suggest that at large n the orbifold C
3/Zn × Zn produces the more exotic

affine gauge symmetry ŜU(n) in the limit of large central charge. In this language, the

sum over ranks records the diagonal U(1) charge remaining after resolving the geometry.

4This follows from the definition of the Weyl group of an algebra. Essentially quoting from [34], the Weyl

group W of an algebra A is the group of automorphisms of the Cartan subalgebra which are restrictions of

conjugations by elements of A, the group obtained via exponentiation of A.
5In the case of sl∞, this is immediate. In the case of bsl (∞), we use the fact that the specialized

character of the basic representation coincides (in the limit of large central charge) with the partition

function of crystal melting. Because the Weyl group of bsl (∞) generates the weight system for the basic

representation, we conclude that each weight appears with multiplicity one, and that correspondingly, the

orbit of the highest weight under the action of the Weyl group generates the representation.
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5.1 2d crystals and sl∞

We now show that the 2d inverted tableau charge Qinv of equation (2.9) is the highest

weight state of the basic representation of sl∞. Some background on the representation

theory of sl∞ is collected in appendix C. Let {αi}i∈Z
denote the simple roots and {ωi}i∈Z

the fundamental weights of sl∞. The relation:

1

2
Qinv · αi = δi,0 (5.3)

for all i implies the formal identification:

ω0 ∼
1

2
Qinv. (5.4)

The specialized character of the irreducible representation L(ω0) is [35]:

chL(ω0) (tρ) =
∑

µ∈Ωω0

mµ (ω0) e(ω0·ρ−j(µ))t = q−ω0·ρ
∏

n≥1

(1 − qn)−1 (5.5)

where j(µ) denotes the depth of the weight µ, q = e−t, mµ (ω0) (= 1) is the multiplicity

of µ and the Weyl vector ρ is the sum over all the ωi. We next compute the regulated dot

product:

ρ ·
1

2
Qinv =

1

2
lim

N→∞

N/2∑

i=−N/2

− |i| = −
1

2

∞∑

i=1

i =
1

24
(5.6)

which implies:

chLinv
(q) = q−1/24

∏

n≥1

(1 − qn)−1 = η(q)−1 (5.7)

where η is the Dedekind eta function and we have switched notation to emphasize the

interpretation of Qinv as a highest weight state. Finally, we note that the basic represen-

tation of sl∞ is identical to the chiral boson representation of the Virasoro algebra. The

details of the mapping between representations of sl∞ and the Virasoro algebra may be

found in [34, 35].

5.2 3d crystals and ŝl (∞)

In the type IIB mirror theory, the intersection of the 3d inverted empty room charge

configuration Qinv with the homology 3-cycles ∆(a,b) which base the quiver theory is:

1

3
Qinv ∩ ∆(a,b) = δ(0,0), (a,b). (5.8)

This is the 3d inverted tableau quiver analogue of equation (5.3).

We now show that the 3d inverted empty room charge configuration Qinv defines a

highest weight state for a representation of the affine algebra ŝl (∞) with central charge

C → ∞. To this end, we show that the character of the basic representation reproduces

the 3d crystal melting partition sum. Because the orbit of the highest weight state under

the Weyl group generates this representation, we conclude that the inverted empty room
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black hole is a highest weight state of ŝl (∞) and that the dual charge configurations are

generated by the action of the Weyl/duality group of ŝl (∞). See appendix D for details

on ŝl (∞) as well its relation to the W1+∞ algebra.

The unitary representations of this algebra are realized by tensoring C ≥ 0 bc systems

with conformal weights λi + 1 and −λi for the ith system. In the case λi = λ for all i, the

specialized character of the associated unitary irreducible representation L(λ,C) is [36, 37]:

chL(λ,C) = TrqL0 = q
1

2
λ(λ−1)C

∞∏

j=1

C∏

k=1

(
1 − qj+k−1

)−1
. (5.9)

Expanding this product yields:

chL(λ,C) = q
1

2
λ(λ−1)C

∞∏

j=1

(
1 − qj

)−1 (
1 − qj+1

)−1
· · ·

(
1 − qj+C−1

)−1
(5.10)

= q
1

2
λ(λ−1)C

(
C∑

n=0

p3d(n)qn + O(qC+1)

)
(5.11)

where p3d(n) denotes the number of crystal melting configurations with n boxes. As C → ∞

the character of L(λ,C) tends to the partition function for 3d crystal melting. In fact, as

explained in [36], the states at levels less than C coincide with those of the quasifinite

Verma module given in appendix D by equation (D.13).

Roughly speaking, C is an upper bound on the number of 2d tableaux given by diag-

onally slicing a three dimensional crystal melting configuration. This implies that in the

large n orbifold C
3/Zn × Zm, m ∼ C. Indeed, note that when C = 1 the character is:

chL(λ,1) = q
1

2
λ(λ−1)

∞∏

j=1

(
1 − qj

)−1
(5.12)

which recovers the partition function for 2d crystal melting. Finally, as observed in [38],

in the limit C → ∞ the basic representation of ŝl (∞) is closely related to the partition

function of a three dimensional free field.

6. Equivariant sheaves and topological strings

In this section we explain the mathematical connection between our black hole charge

configurations and the crystal melting configurations of topological string theory. We also

discuss the sense in which the exceptional collection defined by the empty room perfect

matching is canonically determined by the geometry C
3/Zn × Zn. We caution that this

material is more formal than other parts of this note.

The A-model partition function on C
3 coincides with the crystal melting partition

function [4]:

ZA

(
C

3
)

=
∏

n≥1

(1 − qn)−n = Zcrystal (6.1)
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where q = e−gs . This is also the partition function of the six dimensional topologically

twisted U(1) gauge theory given by a D6-brane filling C
3 [3]. Mathematically, the in-

stanton configurations of the D6-brane are specified by ideal sheaves.6 Physically, these

are singular gauge field configurations which have vanishing D4-charge and D2- and D0-

charge given respectively by the second and third Chern characters of the gauge bundle.

The mathematical theory which counts these ideal sheaves is known as Donaldson-Thomas

theory [39]. It has recently been shown that for toric Calabi-Yau threefolds, the Gromov-

Witten and Donaldson-Thomas invariants coincide [40, 41]. It is believed that for more

general Calabi-Yau threefolds the partition function of this six dimensional U(1) gauge

theory agrees with the result from Donaldson-Thomas theory.

Because C
3 is topologically trivial, the singular gauge field configurations of the U(1)

gauge theory are specified by ideals I generated by monomials in the ring C [x, y, z]. Each

such ideal determines a collection of points in Z
3
≥0:

πI =
{

(i, j, k) ∈ Z
3
≥0|i, j, k ≥ 1, xi−1yj−1zk−1 /∈ I

}
. (6.2)

The D4- and D2-brane charge of such a configuration vanishes and the D0-brane charge is

given by the total number of points in πI [3].

In the rest of this section we explain how these ideals are generated from the per-

spective of the gauged quiver quantum mechanics. Our strategy will be to exploit the dual

meaning of perfect matchings in the two systems. On the one hand, such perfect matchings

parametrize crystal melting configurations, and hence ideal sheaves of C
3. On the other

hand, these same perfect matchings parametrize exceptional collections of sheaves with

support on some complex surface in a resolution of the large n orbifold C
3/Zn × Zn. In

the case of crystal melting configurations, this complex surface is defined by the canonical

resolution of the orbifold singularity.

We first explain the connection between Γ-equivariant sheaves of C
3 and tautological

sheaves in orbifolds of the form C
3/Zn × Zn ≡ C

3/Γ ≡ X for arbitrary n. Following the

discussion of the generalized McKay correspondence in [42], for each ρ : Γ → End (Vρ) an

irreducible representation of Γ, the eigensheaf F ′
ρ on X is:

F ′
ρ ≡ Hom (Vρ,OC3)Γ . (6.3)

The tautological sheaf Fρ has support on the resolution f : X̃ → X:

Fρ = f∗F ′
ρ/torsion. (6.4)

The generalized McKay Correspondence of [43] now implies that the Fρ form a basis for

the K-theory K0(X̃) and lift to a basis for the Γ-equivariant K-theory KΓ
0

(
C

3
)
.

Although there are many crepant7 resolutions of the orbifold C
3/Γ which are all related

by flops, there is one distinguished choice such that the tautological sheaves of the resolution

6An ideal sheaf corresponds to a torsion free sheaf with vanishing first Chern class. For open sets U in

a variety X, we define a collection of ideals I(U) ⊂ OX . These local data define the corresponding ideal

sheaf I.
7A crepant resolution of a singular Calabi-Yau X is a smooth resolution Y such that c1 (Y ) = 0.
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are given by a collection of line bundles which are generated by their global sections and such

that any positive linear combination of the associated divisors is ample on the resolution.

This resolution is a Γ-equivariant version of the C
3 Hilbert scheme and is known as Γ-

Hilb(C3) in the mathematical literature [44].

As explained in [42] and references therein, the tautological sheaves of Γ-Hilb(C3) may

be viewed as a collection of monomials in the ring C [x, y, z]. Specializing to the case of the

large n orbifolds, we now give a local algorithm for converting an exceptional collection of

sheaves supported on a complex surface in Γ-Hilb(C3) into such a collection of monomials.

Given two quiver nodes A and B of a Beilinson quiver connected by a bifundamental XAB ,

the associated monomials are related by multiplication by x:

MB = xMA (6.5)

with similar conventions for multiplication by y and z. Note that this removes the overall

ambiguity of Γ-invariant monomials of the form xyz. The degrees of these monomials

match the rank assignments of the gauged quiver quantum mechanics. The collection of

monomials defined by the empty room perfect matching corresponds to the same collection

of tautological sheaves of Γ-Hilb(C3) discussed in [42]. Further, when F is the starting

node of the perfect matching PM0 with associated monomial MF , the local dimer move

which maps F to a terminal node sends MF to the monomial:

MF → xyzMF . (6.6)

See figure (7) for the change from the empty room perfect matching to the single box perfect

matching. Similar tilings by monomials have appeared in the mathematical literature on

the McKay correspondence. See [42] and references therein for more details.

These monomials generate an ideal IPM in C [x, y, z]. Equation (6.6) implies that

a local dimer rearrangement in the monomials translates to removing a point from the

partition πIPM
defined by equation (6.2). Hence, (with suitable asymptotics) the exceptional

collections of the infinite orbifold lift to monomial generators for ideal sheaves in C
3.

6.1 2d analogue

The partition function for two dimensional crystal melting is given by the topologically

twisted U(1) gauge theory of a D4-brane filling C
2:

ZD4

(
C

2
)

= q−1/24
∏

n≥1

(1 − qn)−1 . (6.7)

Note that the extra factor of q−1/24 agrees with the character formula of equation (5.7).

By resolving C
2/Zn we obtain a tautological sheaf for each quiver node. Each of

these sheaves lifts to a monomial in C [x, y]. The analogue of the Beilinson quiver in two

dimensions is given by deleting a minimal number of arrows from the quiver so that no

directed loops remain. In this case, the starting (resp. ending) nodes of the quiver have all

incoming (resp. outgoing) bifundamentals deleted. When the monomials Mi and Mi+1 are

connected by the arrow Xi,i+1 (resp. Yi+1,i), the analogue of equation (6.5) is Mi+1 = xMi
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Figure 7: Each sheaf of an exceptional collection supported on the complex surface defined by

the canonical resolution of C3/Zn × Zn lifts to a monomial in the variables x, y and z. The figure

shows the effect of changing from the empty room perfect matching to the single box configuration.

The generators of the two ideals in C [x, y, z] are respectively 1 and x, y, z.

(resp. Mi = yMi+1). Given a 2d Beilinson quiver with starting node i, the analogue of

equation (6.6) is:

Mi → xyMi. (6.8)

7. Conclusions

In this note we have discovered a one to one correspondence between two and three di-

mensional crystal melting configurations and certain type IIA BPS black holes obtained

from wrapping branes on collapsed cycles of the large n orbifolds C
2/Zn and C

3/Zn × Zn.

Moreover, the entire BPS spectrum of such black holes is generated by geometric transi-

tions of brane configurations which leave the classical background geometry invariant. In

the process of establishing this connection, we found a more general set of results on the

physical meaning of perfect matchings in gauge theory dimer models and interpreted the

associated black hole partition functions in terms of the representation theory of algebras

naturally associated to the duality groups of the orbifolds. Finally, we provided a mathe-

matical connection between these black hole crystal melting configurations and topological

string theory. In the rest of this section we speculate on some possible extensions of this

work.

Returning to the partition functions of section 5, consider the statistical mechanical

average value of quiver ranks in the limit of uniform weighting given by q → 1. By suitably

rescaling the ranks and locations of quiver nodes, we obtain a limit shape for the profile of

the molten crystal [45, 46, 10] which defines the charges of an average BPS black hole. In

the immediate vicinity of a quiver node all of its neighboring ranks are equal. It is therefore

tempting to deconstruct these quiver theories as in [47]. In our case, however, we can only

deconstruct finite sized patches of the quiver. Lifting to M-theory, this suggests that after

many flops a deconstructed M2-brane emerges with the gradients in the ranks signalling

local changes in the worldvolume curvature.
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Our analysis only treated flop transitions which leave the classical geometry probed

by the branes unchanged. It would be interesting to see whether more general transitions

of the orbifold theories also have an interpretation in topological string theory.

Finally, we only considered the simplest manifestation of three dimensional crystal

melting given by the C
3 Calabi-Yau crystal. As a sketch of what to expect for more general

toric Calabi-Yau threefolds, we note that the mirror curve of the conifold O(−1)⊕O(−1) →

P
1 is described by dimer models on the infinite square lattice [4, 10]. Auspiciously, this is

the same as the gauge theory dimer of the Zn × Zn orbifold of the conifold in the large n

limit.
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A. Exceptional collections and fractional branes

This appendix reviews the procedure for obtaining a physical basis of fractional branes on

a non-compact Calabi-Yau threefold X from an exceptional collection of sheaves supported

on a possibly singular complex surface V given by partially resolving X. A good reference

for additional information on exceptional collections is [48]. An exceptional collection of

sheaves EV =
(
EV

1 , . . . , EV
S

)
supported on V is an ordered collection of sheaves defined by

the conditions:

Extq
(
EV

i , EV
i

)
=

{
0 if q > 0

C if q = 0

}
(A.1)

Extq
(
EV

i , EV
j

)
= 0 if i > j (A.2)

where Ext(·) is a generalization of cohomology for sheaves. When an exceptional collection

satisfies the further property that for all q > 0,

Extq
(
EV

i , EV
j

)
= 0 for all i 6= j (A.3)

it is called strong. We define a helix of sheaves
{
EV

i

}
i∈Z

of period S recursively as follows:

EV
i+S = REV

i+S−1
. . . REV

i+1
EV

i (A.4)

EV
−i = LEV

−i+1
. . . LEV

n−1−i
EV

n−i (i ≥ 0). (A.5)
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The notation LE and RE denotes respectively left and right mutations by the sheaf E. See

pages 5 and 6 of [48] for the definition of mutation for sheaves. Given two sheaves (E,F )

which form an exceptional pair, these mutations correspond to braiding operations which

produce another exceptional pair of sheaves:

(E,F )
L
→ (LEF,E) (A.6)

(E,F )
R
→ (F,RF E). (A.7)

The left and right braiding operations are inverse to one another.

We refer to any exceptional collection which generates
{
EV

i

}
i∈Z

as a foundation of the

helix. It follows from the definitions given above that for every integer m, the collection

of sheaves (EV
m+1, . . . , E

V
m+S) is also a foundation of the helix

{
EV

i

}
i∈Z

. When a helix

has a strong foundation it is called a strong helix.8 An important caveat is that there

are multiple orderings of the sheaves inside of the helix which obey the same periodicity

properties. In this sense, the indexing by the integers should be viewed as only a partial

ordering.9

As proposed in [49] and further substantiated in [21, 50, 51], a B-brane is given by

a bounded complex of coherent sheaves in Db (X). Following the discussion in [6], given

a strong exceptional collection of sheaves supported on V which generates the derived

category of coherent sheaves on V , the corresponding basis of fractional branes in Db(X)

is given by the collection of left-mutated objects lifted from Db (V ) to Db (X):

EFrac =
(
LδEV

1
. . . LδEV

S−1
δEV

S , . . . , LδEV
1

δEV
2 , δEV

1

)
≡ (ES , . . . , , E1) (A.8)

where the notation δE denotes the complex:

. . . → 0 → 0 → E → 0 → 0 → . . . (A.9)

with E a coherent sheaf sitting at the 0th position of the complex. See page 65 of [48] for

the definition of mutation for objects in the derived category. The two collections are dual

in the sense that:

χ
(
EV

i , Ej

)
= δi,j (A.10)

where the pairing χ (A,B) counts with signs the massless open string modes between the

branes A and B. Each strong foundation for a helix defines a physical collection of fractional

branes on X which base the quiver [6, 7].

The upper triangular matrix Sij = χ (Ej, Ei) with ones on the diagonal determines

the adjacency of bifundamentals in the quiver gauge theory. For i < j, Sij is the number

of arrows from node j to node i minus the number from i to j. In the associated Landau-

Ginzburg theory, Sij corresponds to the soliton counting matrix [52]. At the level of charges,

each Ei maps to a homology 3-sphere ∆i in the mirror theory. Our sign convention is that

for i < j:

Sij = χ (Ej, Ei) = ∆j ∩ ∆i. (A.11)

8We note that while operationally quite similar, the definition of strong helix adopted here is slightly

different from that in [6].
9This point was emphasized to us by C. Herzog.
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Next consider two B-branes Ei, Ej of EFrac as in equation (A.8) with mirror 3-cycles ∆i

and ∆j , respectively. For i < j, the Chern character of REi
Ej is:10

ch (REi
Ej) = ch (Ej) − χ (Ej, Ei) ch (Ei) = ch (Ej) − Sijch (Ei) . (A.12)

This maps to the mirror 3-cycle:

ch (REi
Ej) → ∆j + (∆i ∩ ∆j) ∆i. (A.13)

Similarly, the Chern character of LEj
Ei is:

ch
(
LEj

Ei

)
= ch (Ei) − χ (Ej, Ei) ch (Ej) = ch (Ei) − Sijch (Ej) (A.14)

which maps to the mirror 3-cycle:

ch
(
LEj

Ei

)
→ ∆i + (∆i ∩ ∆j)∆j = ∆i − (∆j ∩ ∆i) ∆j. (A.15)

Comparing with the discussion in subsection 3.1, we see that an appropriate combination

of right (resp. left) mutations will realize the transformation S2
R (resp. S2

L) in the mirror

theory.

B. Dimer moves and flops

In this appendix we establish the link between geometry preserving flops and local rear-

rangements of perfect matchings. Each internal perfect matching of a gauge theory dimer

model defines an exceptional collection of sheaves supported on a complex surface obtained

from a partial resolution of the toric Calabi-Yau threefold X [20]. As shown in [11], these

internal perfect matchings also label the internal grid points of the toric diagram for X.

When two perfect matchings correspond to the same internal grid point, they determine

different foundations of the same helix. We now show that a local rearrangement of an

internal perfect matching corresponds to a series of right (resp. left) mutations of the

starting (resp. terminal) sheaf of the Beilinson quiver. In the mirror type IIB theory, this

corresponds to the transformation S2
R (resp. S2

L).

First fix an internal perfect matching PM with associated strong exceptional collec-

tion of sheaves EPM = (EPM
1 , . . . , EPM

S ) supported on the complex surface VPM. With

conventions as in appendix A, the sheaf EPM
1 corresponds to a face F in the dimer model

such that all of the incoming arrows of F belong to the perfect matching. Next consider

the internal perfect matching PM ′ such that the formal difference of edges PM − PM ′

forms a closed loop encircling the face F . This defines another exceptional collection

EPM ′

=
(
EPM ′

1 , . . . , EPM ′

S

)
with support on VPM. We assume that the corresponding

rearrangement of perfect matchings only alters the sheaf EPM
1 of the collection EPM so

that:

EPM ′

i−1 = EPM
i (B.1)

10Note that the ordering of B-branes in equation (A.8) means that when i < j, Ei appears after Ej in

the collection of fractional branes.
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for i = 2, . . . , S. To determine the effect on the sheaf EPM
1 , note that the helix condition

implies the collection
(
EPM

2 , . . . , EPM
S , EPM

S+1

)
is strongly exceptional. Since all of the outgo-

ing arrows of the sheaf EPM
S+1 are absent from the associated Beilinson quiver, we conclude

that:11

EPM ′

S = EPM
S+1 = REPM

S
. . . REPM

2
EPM

1 (B.2)

where the second equality follows from equation (A.4).

Next consider the effect of a local dimer move on a terminal node of the Beilinson

quiver. In this case, an argument similar to the one given above implies that the exceptional

collection of sheaves changes to:

EPM ′

i+1 = EPM
i (B.3)

for i = 1, . . . , S − 1 and further,

EPM ′

1 = EPM
0 = LEPM

1
· · · LEPM

S−1
EPM

S . (B.4)

In the event that there are two possible starting (resp. terminal) nodes for the Beilinson

quiver, there are then two distinct orderings of the sheaves in the exceptional collection.

The two local dimer rearrangements correspond to right (resp. left) mutating the chosen

starting (resp. terminal) sheaf to the right (resp. left) of all other sheaves in the collection.

We now demonstrate that the local dimer moves considered above correspond to the

transformations S2
R and S2

L in the mirror theory. Given a quiver node i, we split the

remaining quiver nodes into three types: those that are outgoing from i, those that are

incoming to i and those that do not touch i. We label the sheaves of the exceptional

collection according to this convention as well. In the case i = 1, we have outgoing sheaves

EPM
2 , . . . , EPM

a and incoming sheaves EPM
a+1, . . . , E

PM
S , where by abuse of notation we have

labelled all nodes which do not touch i as incoming. Now right mutate E1 through the

outgoing sheaves. We refer to this “helix duality” as HR. This transformation produces

another exceptional collection:

HR

(
EPM

)
=

(
EPM

2 , . . . , EPM
a , REPM

a
· · · REPM

2
EPM

1 , EPM
a+1, . . . , E

PM
S

)
. (B.5)

The corresponding transformation on the basis of fractional branes was computed in [6]

with the result:

HR (EFrac) =
(
ES , . . . , Ea+1, δE

PM
1 [1] , RδEPM

1
Ea, . . . , RδEPM

1
E2

)
(B.6)

where the the object F [n] in Db (X) denotes the complex F with all entries shifted n

positions to the left. Note that the complex corresponding to the dualized node has shifted

one position to the left. This has the effect of exchanging the brane for the anti-brane

and thus reverses the direction of all incoming and outgoing arrows incident on the corre-

sponding quiver node. Performing another HR duality therefore right mutates the sheaf

REPM
a

· · · REPM
2

EPM
1 through the sheaves EPM

a+1, . . . , E
PM
S :

H2
R

(
EPM

)
=

(
EPM

2 , . . . , EPM
S , REPM

S
· · · REPM

2
EPM

1

)
. (B.7)

11We thank C. Herzog for correspondence on this point.
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The corresponding transformation on the basis of fractional branes is:

H2
R (EFrac) =

(
δEPM

1 [2] , RδEPM
1

[1]ES, . . . , RδEPM
1

[1]Ea+1, RδEPM
1

Ea, . . . , RδEPM
1

E2

)
. (B.8)

Next consider the “helix duality” HL given by left mutating EPM
S past all of its

incoming sheaves. We label the incoming and outgoing sheaves as EPM
b+1, . . . , E

PM
S−1 and

EPM
1 , . . . , EPM

b , respectively. Applying the transformation HL yields:

HL

(
EPM

)
=

(
EPM

1 , . . . , EPM
b , LEPM

b+1
· · · LEPM

S−1
EPM

S , EPM
b+1, . . . , E

PM
S−1

)
. (B.9)

The corresponding transformation on the basis of fractional branes is:

HL (EFrac) =
(
LδEPM

S
ES−1, . . . , LδEPM

S
Eb+1, δE

PM
S [−1] , Eb, . . . , E1

)
. (B.10)

As before, δEPM
S has been sent to its “anti-brane”, although it is now δEPM

S [−1] rather

than δEPM
S [1]. Performing another HL transformation produces the exceptional collection:

H2
L

(
EPM

)
=

(
LEPM

1
· · · LEPM

S−1
EPM

S , EPM
1 , . . . , EPM

b , EPM
b+1, . . . , E

PM
S−1

)
(B.11)

with corresponding basis of fractional branes:

H2
L (EFrac) =

(
LδEPM

S
ES−1, . . . , LδEPM

S
Eb+1, LδEPM

S
[−1]Eb, . . . , LδEPM

S
[−1]E1, δE

PM
S [−2]

)
.

(B.12)

We recognize the transformation of equation (B.7) as the local rearrangement of PM given

by equation (B.2). It follows from equation (A.13) that in terms of homology cycles in

the mirror theory, H2
R corresponds to passing the brane wrapping ∆1 through all outgoing

and then all incoming branes. An analogous argument shows that the local rearrangement

of PM given by equation (B.4) corresponds to passing the brane wrapping ∆S through

all incoming and then all outgoing branes. Similar computations of monodromy transfor-

mations in terms of mutations have appeared in [53 – 55]. As discussed in [56], however,

there is in general a difference between monodromy transformations and mutations in the

derived category.

Finally, note that under the transformation H2
R (resp. H2

L), the fractional brane cor-

responding to δEPM
1 (resp. δEPM

S ) shifts to δEPM
1 [2] (resp. δEPM

S [−2]) and also moves to

a different position in the collection of fractional branes which base the quiver. We thus

see that it is too naive to assume as we did in subsection 3.1 that the brane corresponding

to the dualized node simply returns to itself.

C. Representations of sl∞

This appendix reviews material from [34] and [35] on the correspondence between states in

the basic representation of sl∞ and 2d Young tableaux. These 2d tableaux also correspond

to the states of the chiral boson representation of the Virasoro algebra.

The algebra sl∞ is defined as the space of traceless infinite matrices with only finitely

many non-zero entries. Given an infinite vector space V with basis {vi}i∈Z
, we define
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the infinite wedge space F = ∧∞V as the complex vector space spanned by “semi-infinite

monomials”:

vi1 ∧ vi2 ∧ . . . (C.1)

where i1 > i2 > . . . , and in = in−1 − 1 for n ≫ 0. F defines a representation r of sl∞:

r(a) (vi1 ∧ vi2 ∧ . . .) = (a · vi1) ∧ vi2 ∧ . . . + vi1 ∧ (a · vi2) ∧ . . . + . . . (C.2)

where a · v denotes matrix multiplication of the vector v ∈ V by the matrix a ∈ sl∞. For

each integer m ∈ Z, we define a charge m vacuum vector:

|m〉 ≡ vm ∧ vm−1 ∧ vm−2 ∧ . . . (C.3)

and define the “charge-m” subspace F (m) as the linear span of all semi-infinite monomials

which differ from |m〉 in only a finite number of places. F decomposes into independent

charge spaces:

F = ⊕
m∈Z

F (m). (C.4)

Each F (m) defines an irreducible representation of sl∞ isomorphic to the basic represen-

tation L (ωm), where ωm denotes the fundamental weight such that ωm · αn = δm,n for all

simple roots αn. The correspondence between the generators of F (m) and 2d partitions of

the form {λ1 ≥ λ2 ≥ · · · ≥ 0} is given by the bijection:

vi1 ∧ vi2 ∧ . . . 7→ {λ1 = i1 − m,λ2 = i2 − (m − 1), . . .} . (C.5)

Because the λi correspond to the lengths of rows in a 2d Young tableau, we obtain the

expected correspondence.

D. Representations of ŝl (∞) and W1+∞

This appendix reviews the representation theory of the algebras ŝl (∞) and W1+∞. Our

discussion closely follows that in [37] where further details may be found. The algebra

g̃l (∞) consists of infinite matrices with only a finite number of non-zero diagonals. Note

that this is a much larger space than gl∞ which consists of infinite matrices with only a

finite number of non-zero entries. The algebra ĝl (∞) is a central extension of g̃l (∞) and

is spanned by generators E(r, s) for r, s ∈ Z subject to the commutation relations:

[
E

(
r, s), E(r′, s′

)]
= δr′+s,0E(r, s′) − δr+s′,0E(r′, s) + Cδr+s′,0δr′+s,0 (θr − θr′) (D.1)

where θr equals 1 for r ≥ 0 and 0 otherwise.

The W1+∞ algebra is generated by polynomials of z, z−1 and D ≡ z∂z subject to the

commutation relations:

[
W

(
znexD

)
,W

(
zmeyD

)]
= (emx − eny)W (zn+me(x+y)D) − C

emx − eny

ex+y − 1
δn+m,0 (D.2)

where n,m ∈ Z, C is the central charge of the algebra and x and y are place keeping

devices in the expansion of the exponentials. The Cartan subalgebra is generated by the
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operators W (Dk) for k ≥ 0. The generators Ln ≡ −W (znD) span a Virasoro subalgebra

with central charge cVIR = −2C. The realization of the W1+∞ algebra in terms of ĝl (∞)

is given by:

W
(
znexD

)
=

∑

r,s∈Z

r+s=n

ex(λ−s)E(r, s) − C
eλx − 1

ex − 1
δn,0 (D.3)

where λ is a real parameter which we will eventually identify with the conformal weight

of a field in the free field realization of the algebra. Although infinite, the above sum is

restricted to the nth diagonal.

A highest weight representation of W1+∞ is determined by a highest weight state |λ〉

such that:

W
(
znDk

)
|λ〉 = 0 (n ≥ 1, k ≥ 0) (D.4)

W (Dk) |λ〉 = ∆k |λ〉 (k ≥ 0). (D.5)

In general, the weights ∆k may be complex numbers which we encode as coefficients in the

weight function:

∆ (x) = −
∑

k≥0

∆k
xk

k!
. (D.6)

The Verma module associated with |λ〉 is given by all descendants of the form:

W
(
z−n1Dk1

)
. . . W

(
z−nmDkm

)
|λ〉 (D.7)

where ni ≥ 1 and ki ≥ 0 for all i. From the perspective of the Virasoro subalgebra, the level

of the given descendant is n1 + . . .+nm. We obtain an irreducible representation of W1+∞

by projecting out the null states of the above module. In contrast to representations of the

Virasoro algebra, note that there are an infinite number of states at each level. In spite of

this, there exist representations of W1+∞ which have a finite number of independent states

at each level [57]. Such representations are called quasifinite.

A highest weight state |λ〉 of ĝl (∞) is defined by the conditions:

E (r, s) |λ〉 = 0 (r + s > 0) (D.8)

E(r,−r) |λ〉 = qr |λ〉 (r ∈ Z). (D.9)

A representation of ĝl(∞) is quasifinite only when a finite number of hr = qr − qr−1 +Cδr,0

are different from zero [57]. The descendants of |λ〉 are of the form:

E (−r1,−s1) · · · E (−rn,−sn) |λ〉 (D.10)

where r ≥ 0 and s ≥ 1. The commutation relation:

[
W

(
D1

)
, E (r, s)

]
= (r + s)E (r, s) (D.11)

implies that the state of equation (D.10) is an eigenstate of W
(
D1

)
with eigenvalue −r1 −

s1 − r2 − s2 − . . . − rn − sn. In fact, one of the key results of [57] establishes that the

quasifinite representations of ĝl (∞) and W1+∞ are identical.
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The quasifinite Verma module V (λ,C) of the highest weight state with weight function:

∆ (x) = C
eλx − 1

ex − 1
(D.12)

is spanned by states of the form:

W
(
z−nDk

)
|µ〉 (D.13)

where 0 ≤ k ≤ n − 1 and n ≥ 0 and |µ〉 corresponds to a descendant in the module. The

specialized character of the quasifinite Verma module is:

chVerma = TrqL0 = q
1

2
λ(λ−1)C

∏

n≥1

(1 − qn)−n . (D.14)

When C is not an integer, the quasifinite Verma module is in fact an irreducible repre-

sentation of W1+∞. Unfortunately, representations with non-integer C are not unitary,

making the physical interpretation unclear. In the case of the unitary representations, the

above Verma module will contain null vectors which must be projected out. Necessary

and sufficient conditions for a unitary representation were found in [57] and are given by

C ∈ Z≥0 and:

∆ (x) =

C∑

i=1

eλix − 1

ex − 1
(D.15)

where the λi are real numbers. We note that such a representation is obtained from the

tensor product of C bc systems with associated conformal weights λi + 1 and −λi for

1 ≤ i ≤ C.
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